

Annual Water Quality

Las Cruces Utilities - Water Section
Las Cruces Municipal Water System (NM3511707)

Annual Consumer Confidence Report Water Quality

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report [CCR]) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality provided by Las Cruces Utilities (LCU) to more than 100,000 residents. As you look through the data tables, you will see that once again, we have no water quality violations. LCU is committed to providing you with information because informed customers are our best allies.

Do I Need To Take Special Precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline via phone at 800.426.4791.

The Water We Drink

The Water Line of Business provides about 10.0 billion gallons of drinking water to customers in Las Cruces each year. The source of our drinking water is groundwater from the Mesilla and Jornada Bolsons. The City has a distribution system of 28 active wells, within or near the City Limits to supply our community with high quality drinking water. These wells draw water from depths of 300 to 1,000 feet below ground surface. While these deep groundwater sources provide for protection from many surface contaminants and drought resilience, small amounts of naturally occurring minerals dissolve into the water and account for moderate levels of calcium, manganese, and iron. This common "hard water" typical of groundwater sources in the Southwest can affect the aesthetic quality of the water by increasing hardness and may slightly alter the color and taste.

Source Water Assessment & Its Availability

The Source Water Assessment (SWA) by the New Mexico Environment Department (NMED) Drinking Water Bureau provides baseline data about quality of our water before it is treated and distributed to consumers. This is important because it identifies the origins of potential contaminant, and indicates the susceptibility of our water system to contamination. Because we pump water from deep aquifers, the likelihood of this kind of contamination is low, but it can occur under some circumstances and must be evaluated. For additional information regarding the SWA please contact **David Torres** of NMED via phone at **505.259.5048** or via email at **david.torres@state.nm.us**.

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? There are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature. Visit **www.epa.gov/watersense** for more information.

SAVE...

...up to 1,000 gallons a month.

Fix leaky toilets and faucets. Faucet washers are inexpensive and take minutes to replace. To check for a toilet leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fix it or replace it with a new, more efficient model.

...up to 1,000 gallons a month.

Only run clothes washer and dishwasher when full.

...up to 750 gallons a month.

Use a water-efficient showerhead. They're inexpensive, easy to install. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.

...up to 500 gallons a month.

Shut off water when brushing teeth, washing hair, and shaving.

Teach your kids about water conservation

to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!

Water plants only when necessary.

Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.

The City of Las Cruces encourages residents to water outdoor vegetation wisely to conserve for future demand. The restrictions apply to all residential and commercial properties served by Las Cruces Utilities. Please comply with the City of Las Cruces Water Conservation Ordinance.

Outdoor Watering Restrictions

You Can Help Protect Our Source Water

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides - they contain hazardous chemicals that can reach your drinking water source.
- Dispose of chemicals properly; take used motor oil and other Household Hazardous waste (HHW) to the South Central Solid Waste Authority (SCSWA) Recycling Center at 2855 W. Amador Ave (open 7 days a week) for disposal of residential amounts of used motor oil and HHW. Additional information can be found at www.SCSWA.net.
- · Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to nearby drinking water sources or consider connecting to a public wastewater system.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels.

How Can I Get Involved?

We encourage public interest and participation in our community's water quality and decisions affecting drinking water. The Las Cruces Utilities (LCU) Water Section holds public meetings as needed when specific issues concerning drinking water affect our community. The most effective way to make comments or suggestions is to telephone or write directly to Ronald N. Borunda, Deputy Director/ Las Cruces Utilities. Water. His contact information is provided under the "Information Contacts" section of this pamphlet. Concerns may also be brought before the City Council in their bi-weekly public meetings, or the LCU Board of Commissioners in their monthly public meetings. Water Quality data for the Municipal Water Supply System, and other LCU operated water systems as well as more information about our water is available at www.lascruces.org. The Administrator and his staff will be happy to answer any questions, or discuss suggestions you may have about our drinking water.

Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

Data Table

Contaminants	Units	MCLG	AL	Your Water	Sample Date	No. Samples Exceeding AL	Exceeds AL	Typical Source
Inorganic Contaminants								
Copper - action level at consumer taps	ppm	1.3	1.3	0.2	2021	0	Nο	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps	ppb	0	15	0.003	2021	0	Nο	Corrosion of household plumbing systems; Erosion of natural deposits

	Units	MCLG or MRDLG	MCL, TT, or MRDL	Detected In Your Water	Range		Sample			
Contaminants					Low	High	Date	Violation	Typical Source	
Disinfectants & Disinfection B (There is convincing evidence	•		ectant is necess	sary for control	of microl	oial conta	aminants)			
Chlorine (as Cl2)	ppm	4	4	1	0	1	2021	No	Water additive used to control microbes	
Haloacetic Acids (HAA5)	ppb	NA	60	10**	5.9	15	2021	No	By-product of drinking water chlorination	
Total Trihalomethanes (TTHMs)	ppb	NA	80	38**	27	51	2021	No	By-product of drinking water disinfection	
Inorganic Contaminants	Inorganic Contaminants									
Arsenic	ppb	0	10	3	1.8	3	2019	No	Erosion of natural deposits	
Barium	ppm	2	2	0.084	0.048	0.084	2019	No	Erosion of natural deposits	
Fluoride	ppm	4	4	0.19	ND	0.19	2021	No	Erosion of natural deposits	
Nitrate [measured as Nitrogen]	ppm	10	10	3.81	0	3.81	2021	No	Erosion of natural deposits; Runoff from fertilizer use; Leaching from septic tanks, sewage	
Selenium	ppb	50	50	3.7	ND	3.7	2019	No	Erosion of natural deposits; Discharge from petroleum and metal refineries; Discharge from mines	
Microbiological Contaminant	s			•				•		
E. coli (RTCR) – in the distribution system	PS	0	EC	0	NA	NA	2021	No	Naturally present in the environment	
Total Coliform (RTCR)	% PS/ month	NA	тт	NA	NA	NA	2021	No	Naturally present in the environment	
Radioactive Contaminants	•		•		,			•		
Alpha emitters	pCi/L	0	15	10.3	2.3	10.3	2021	No	Erosion of natural deposits	
Beta/photon emitters	pCi/L	0	50	13	13	13	2021	No	Decay of natural and man-made deposits.	
Radium (combined 226/228)	pCi/L	0	5	0.66	0.66	0.66	2021	No	Erosion of natural deposits	
Uranium	μg/l	0	30	12	12	12	2021	No	Erosion of natural deposits	
Volatile Organic Contaminants										
Trichloroethylene	ppb	0	5	0.8	ND	0.8	2021	No	Discharge from metal degreasing sites and other factories	

Term	Definition							
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.							
EC	Routine and repeat samples are total coliform positive and either is E. coli - positive or system fails to take repeat samples following E. coli positive routine sample or system fails to analyze total coliform positive repeat sample for E. coli.							
LRAA	Locational Running Annual Average is the average of samples taken at a particular monitoring location during the previous four calendar quarters							
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.							
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.							
MNR	Monitored Not Regulated							
MRDL	Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.							
MRDLG	Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.							
MPL	State Assigned Maximum Permissible Level							
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.							
Variances & Exemptions	State or EPA permission not to meet an MCL or a treatment technique under certain conditions.							

Term	Definition					
μg/L	Number of micrograms of substance in one liter of water					
ppm	parts per million, or milligrams per liter (mg/L)					
ppb	parts per billion, or micrograms per liter (µg/L)					
ppt	parts per trillion, or nanograms per liter					
pCi/L	picocuries per liter (a measure of radioactivity)					
% PS/ month	Percent of samples taken monthly that were positive					
NA	not applicable					
ND	Not detected					
NR	Monitoring not required, but recommended.					
PS	The number of positive samples taken that year					

Undetected Contaminants

The following contaminants were monitored but not detected in your water.

		MCLG or	MCL, TT, or			
Contaminants	Units	MRDLG	MRDL	Your Water	Violation	Typical Source
1,1,1-Trichloroethane	ppb	200	200	ND	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane	ppb	3	5	ND	No	Discharge from industrial chemical fact <mark>ories</mark>
1,1-Dichloroethylene	ppb	7	7	ND	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene	ppb	70	70	ND	No	Discharge from textile-finishing factories
1,2-Dichloroethane	ppb	0	5	ND	No	Discharge from industrial chemical factories
1,2-Dichloropropane	ppb	0	5	ND	No	Discharge from industrial chemical factories
2,4,5-TP (Silvex)	ppb	50	50	ND	No	Residue of banned herbicide
2,4-D	ppb	70	70	ND	No	Runoff from herbicide used on row crops
Alachlor	ppb	0	2	ND	No	Runoff from herbicide used on row crops
Antimony	ppb	6	6	ND	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Atrazine	ppb	3	3	ND	No	Runoff from herbicide used on row crops
Benzene	ppb	0	5	ND	No	Discharge from factories; Leaching from gas storage tanks and landfills
Benzo(a)pyrene	ppt	0	200	ND	No	Leaching from linings of water storage tanks and distribution lines
Beryllium	ppb	4	4	ND	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium	ppb	5	5	ND	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Carbofuran	ppb	40	40	ND	No	Leaching of soil fumigant used on rice and alfalfa
Carbon Tetrachloride	ppb	0	5	ND	No	Discharge from chemical plants and other industrial activities
Chlordane	ppb	0	2	ND	No	Residue of banned termiticide
Chlorobenzene (monochlorobenzene)	ppb	100	100	ND	No	Discharge from chemical and agricultural chemical factories
Chromium	ppb	100	100	ND	No	Discharge from steel and pulp mills; Erosion of natural deposits
cis-1,2-Dichloroethylene	ppb	70	70	ND	No	Discharge from industrial chemical factories
Cyanide	ppb	200	200	ND	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Dalapon	ppb	200	200	ND	No	Runoff from herbicide used on rights of way
Di (2-ethylhexyl) adipate	ppb	400	400	ND	No	Discharge from chemical factories
Di (2-ethylhexyl) phthalate	ppb	0	6	ND	No	Discharge from rubber and chemical factories
Dibromochloropropane (DBCP)	ppt	0	200	ND	No	Runoff/leaching from soil fumigant used on soybeans, cotton, and orchards
Dichloromethane	ppb	0	5	ND	No	Discharge from pharmaceutical and chemical factories
Dinoseb	ppb	7	7	ND	No	Runoff from herbicide used on soybeans and vegetables
Diquat	ppb	20	20	ND	No	Runoff from herbicide use
Endothall	ppb	100	100	ND	No	Runoff from herbicide use
Endrin	ppb	2	2	ND	No	Residue of banned insecticide
Ethylbenzene	ppb	700	700	ND	No	Discharge from petroleum refineries
Ethylene dibromide	ppt	0	50	ND	No	Discharge from petroleum refineries
Glyphosate	ppb	700	700	ND	No	Runoff from herbicide use
Heptachlor	ppt	0	400	ND	No	Residue of banned pesticide
Heptachlor epoxide	ppt	0	200	ND	No	Breakdown of heptachlor
Hexachlorobenzene	ppb	0	1	ND	No	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclopentadiene	ppb	50	50	ND	No	Discharge from chemical factories
Lindane	ppt	200	200	ND	No	Runoff/leaching from insecticide used on cattle, lumber, gardens
Mercury (Inorganic)	ppb	2	2	ND	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Methoxychlor	ppb	40	40	ND	No	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Nitrite (measured as Nitrogen)	ppm	1	1	ND	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Oxamyl (Vydate)	ppb	200	200	ND	No	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
Polychlorinated biphenyls (PCBs)	ppt	0	500	ND	No	Runoff from landfills; Discharge of waste chemicals
Pentachlorophenol	ppb	0	1	ND	No	Discharge from wood preserving factories
Picloram	ppb	500	500	ND	No	Herbicide runoff
Simazine	ppb	4	4	ND	No	Herbicide runoff
Styrene	ppb	100	100	ND	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene	ppb	0	5	ND	No	Discharge from factories and dry cleaners
Thallium	ppb	0.5	2	ND	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories
Toluene	ppm	1	1	ND	No	Discharge from petroleum factories
Toxaphene	ppb	0	3	ND	No	Runoff/leaching from insecticide used on cotton and cattle
Vinyl Chloride	ppb	0	2	ND	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes	ppm	10	10	ND	No	Discharge from petroleum factories; Discharge from chemical factories
o-Dichlorobenzene	ppb	600	600	ND	No	Discharge from industrial chemical factories
p-Dichlorobenzene	ppb	75	75	ND	No	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene	ppb	100	100	ND	No	Discharge from industrial chemical factories

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA's) Safe Drinking Water Hotline (800.426.4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

- microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- ✓ inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming;
- pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- ✓ organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and
- radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Additional Information

for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Las Cruces Municipal Water System (NM3511707) is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Las Cruces Utilities -

Water Operations and Maintenance Line of Business

Ronald Borunda, Deputy Director/Las Cruces Utilities/ Water P.O. Box 20000, Las Cruces, New Mexico 88004 Utilities Department Phone: 575.528.3515 www.las-cruces.org

NMED Las Cruces District Office

2301 Entrada del Sol, Las Cruces, NM 88001 Phone: 575.288.2050

www.env.nm.gov/

NMED Drinking Water Bureau -**Source Water Assessment**

David Torres

Phone: 505.259.5048

Email: David.Torres@state.nm.us

www.env.nm.gov/drinking water/source-water-protection/

EPA- Groundwater and Drinking Water

1200 Pennsylvania Ave, N.W. (Mail Code 4606M), Washington, DC 20460

Drinking Water Hotline: 1.800.426.4791

www.epa.gov/ground-water-and-drinking-water

EPA - CCR Information for Consumers

Drinking Water Hotline: 1.800.426.4791 www.epa.gov/ccr

EPA - Water Sense

Water Sense Helpline: 1.866.987.7367

www.epa.gov/watersense

American Water Works Association

6666 W. Quincy Ave., Denver, CO 80235 USA

Phone: 1.800.926.7337 www.awwa.org

The Groundwater Foundation

3201 Pioneers Blvd Suite 105, Lincoln, NE 68502

Phone: 1.800.858.4844 www.groundwater.org

This report can be made available in alternative formats upon request. To make a request call **575.528.3515** or TTY **575.528.3541**.

El informe contiene informacion importante sobre la calidad del agua en su comunidad. Traduzcalo o hable con alguien que lo entienda bien.

